

Advanced Programming
Languages in the

Enterprise Datacenter

Chet Murthy
IBM Research

Two big ideas

Advanced Programming Language
technology is a secret weapon in

enterprise computing

Farm where the fertilizer is thickest:
Enterprise Systems

Plan of Talk

●Enterprise software
●The problem and opportunity for PL
research
●Applying ML and partial evaluation in
enterprise software: a case study
●Summary and Future work

Enterprise software systems

● Run our world

● Comprise millions of lines of application code

● Written by many thousands of programmers

● Run on sometimes thousands of machines

● Cost many millions of dollars

Names have been changed to protect
paying customers

FredCo Bank (2000)

FW

Registry
Server
(TAI)

LD

LD
FW

FW

FW

FW

SMS
(TAI)

PAM
(TAI)

CAT
(TAI)

FW

FW

FW

FW

FW

TAI
Plugin

Two-headed
Oracle DB

Web App
Servers

Netscape Enterprise Servers

mainframe
app (198?)

One (slice of one) of the biggest banks'
electronic checking system

FredCo Bank (2000)

● RPCs flow right-to-
left, synchronous

● All persistent side-
effects reside in
DBs

FW

Registry
Server
(TAI)

LD

LD
FW

FW

FW

FW

SMS
(TAI)PAM

(TAI)CAT
(TAI)

FW

FW

FW

FW

FW

TAI
Plugin

Two-headed
Oracle DB

Web App
Servers

Netscape

● One out of ~10 slices of systems is shown
● All slices independently developed
● More “layers” to the left of diagram

main
frame

Web
Server

TAI

Jeff's Bank (2004)

Database
Vendor A

Vendor C

Vendor B

Mainframe
(80's)

Portal
Server

Reporting

TAI
Other

Entitlement

Accounting

Directory
Server

Document
Mgmt

More Legacy
Java

Another large bank's main client portalLegacy
Java (00's)

Jeff's Bank (2004)

Mainframe

Web
TAIDB A

DB C

DB B

Portal

Report

TAI
Other

Ent

Acct

Dir

Docs
Java

Java

● Layers of systems grow by accretion over
time (decades)

● Only communication is RPC

Object-oriented wrappers for tables

Input handling Demarshalling/parsing/validation

Osiris Private Bank (2001)
(inside the app-server)

Data access abstraction

Even more object wrappers

Business logic

Updates

Data manipulation/reduction

Different teams, different frameworks

Permissions, tax, currency conversion

“sell GM”

“current profit”/ “year-to-date”

tables, charts,pixel-perfect renderingPresentation conversion

Request

Response

DB

Plan of Talk

● Enterprise software
● The problem and opportunity for PL

research
● Applying ML and partial evaluation in

enterprise software: a case study
● Summary and Future work

● Individual layers written by independent teams

● Often written at different times/decades/continents

● Lack of skill/experience results in layer after layer of
framework

● Lack of business interest prevents consolidation

● Natural tendency to “wrapper” rather than
extend/fix

● Strong functional interfaces separate components

● Side effects in DBs, not program variables

● Dynamic languages, static code

“Farm where the fertilizer is thickest” (1)

“Farm where the fertilizer is thickest” (2)

● Component and network interfaces are
referentially transparent positions

● The “components” are externally
“functional”

● Late-stage large-grain optimization is
feasible

This should look familiar

DB

Request ResponseApplication
Transaction

Code

updatesqueries

DB

And indeed it is

● Combinational logic is
“functional”

● DIP sockets are
referentially transparent
positions

● State change via register
update

● FP, Haskell, HOL ... for
hardware

● Components are
externally “functional”

● Nodes and layers are
referentially transparent
positions

● Transactions' side-effects
all in DB

● FP for the enterprise?

All the reasons pure functional technology
was good for describing circuitry should

apply to these systems

Plan of Talk

● Enterprise software
● The problem and opportunity for PL

research
● Applying ML and partial evaluation in

enterprise software: a case study
● Summary and Future work

An experimental demonstration
Putting FP to work

● Find candidate “component” of an application

● Replace component with a pure functional
implementation

● Show this replacement is more efficient

● Go further, replace more, make it even faster,
even simpler

Subsystem is XSL
Replace with ML

The XSL language

● EXtensible Stylesheet Language

● Simple dynamically-typed functional language

– Often dynamically compiled
● Data is all trees (XML)

– Processors often use universal datatype (cf. LISP s-
expressions)

● Usually statically typable

● Type system is remarkably ML-like

● Invariably embedded in a larger server application

● Almost all server-side uses are static code

● XSL stylesheet takes in a list of
(model,year,accessory), and outputs a list
sorted by model, and by year, of accessories

● Not beautiful, not useful, just a simple
motivating example

Example Stylesheet

Prelude 1998 Tires
Prelude 1998 Mufflers
Prelude 1998 Heater Motor
Prelude 1999 Tires
Prelude 1999 Mufflers
Accord 1988 Starter
Accord 1988 Mufflers
Accord 1988 Clutch
Accord 1987 Oil Filters
Accord 1987 Air Conditioning

Accord 1988 Starter, Mufflers, Clutch
Accord 1988 Starter, Mufflers, Clutch
Accord 1988 Starter, Mufflers, Clutch
Accord 1987 Oil Filters, Air Conditioning
Accord 1987 Oil Filters, Air Conditioning
Prelude 1998 Tires, Mufflers, Heater Motor
Prelude 1998 Tires, Mufflers, Heater Motor
Prelude 1998 Tires, Mufflers, Heater Motor
Prelude 1999 Tires, Mufflers
Prelude 1999 Tires, Mufflers

Input XML DTD and ML type
<!ELEMENT Output (Row*)>

<!ELEMENT Row (MODEL,YEAR,ACCESSORIES)>

<!ELEMENT MODEL (#PCDATA)>
<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT ACCESSORIES (#PCDATA)>

module Source = struct
 type output = row list
 and row = {model: model; year: year; accessories: accessories}
 and model = string
 and year = string
 and accessories = string
end

Output XML DTD and ML type
<!ELEMENT Output (MODEL*)>

<!ELEMENT MODEL (YEAR*)>
 <!ATTLIST MODEL name CDATA #REQUIRED>

<!ELEMENT YEAR (PartList)>
 <!ATTLIST YEAR date CDATA #REQUIRED>

<!ELEMENT PartList (ACCESSORIES*)>
<!ELEMENT ACCESSORIES (#PCDATA)>

module Dest = struct
 type output = model list
 and model = name * year list
 and year = date * accessories list
 and accessories = string
 and name = string
 and date = string
end

<xsl:stylesheet xmlns:xsl="http://www.w3.org/XSL/Transform/1.0"
 xmlns="http://www.w3.org/TR/REC-html40" result-ns=""
 indent-result="yes">
<xsl:template match="Output">
<Output>
<xsl:apply-templates select="Row">
<xsl:sort select="MODEL"/>
<xsl:sort select="YEAR"/>
</xsl:apply-templates>
</Output>
</xsl:template>
<xsl:template match="Row">

<xsl:variable name="model">
<xsl:value-of select="./MODEL"/>
</xsl:variable>

<xsl:variable name="year">
<xsl:value-of select="./YEAR"/>
</xsl:variable>

<MODEL name="{$model}">
 <YEAR name="{$year}">
 <PartList>
 <xsl:copy-of select="/Output/Row/MODEL[text()=$model]/
 ../YEAR[text()=$year]/../ACCESSORIES"/>
 </PartList>
 </YEAR>
</MODEL>
</xsl:template>
</xsl:stylesheet>

(1) Sort by
MODEL

(2) Sort by
YEAR

(3) Get
MODEL

(4) Get YEAR

(5) Output
MODEL and

YEAR

(6) Output all
ACCESSORIES

for that
MODEL/YEAR

The Stylesheet

The ML Program

let transform_output (o:Source.output) =

let transform_row (r:Source.row) =
 let model = r.Source.model in
 let year = r.Source.year in
 (model,

 [(year,
 map_succeed

 (function
 ({Source.model=model';Source.year=year';} as r')
 when model=model' && year=year' -> r'.Source.accessories

 | _ -> failwith "caught")
 o)]) in

let sort_by_model_then_year =
 Sort.list (fun r r' -> r.Source.model <= r'.Source.model

 or r.Source.model = r'.Source.model &&
 r.Source.year <= r'.Source.year)

 o in
 ((List.map transform_row sort_by_model_then_year):Dest.output)

(1+2) Sort by
MODEL/YEAR

(3) Get MODEL

(4) Get YEAR

(5) Output
MODEL and YEAR

(6) Output all
ACCESSORIES for
that MODEL/YEAR

What's better about ML?

● Datatype specialized to XML DTD
● Program specialized to types
● Standard FP technology applies
● View types eliminate serialization &

parsing
– XSL often embedded in apps (good)
– App data translated to XML strings (bad)
– Parsed back to generic trees (bad)

Digression: View Types

type 'a list = Nil | Cons of 'a * 'a list

module type LIST = sig
 type 'a t
 val inNil : unit -> 'a t
 val inCons : 'a ->'a t -> 'a t

 val isNil : 'a t -> bool
 val isCons : 'a t -> bool

 val outNil : 'a t -> unit
 val outCons : 'a t -> 'a * 'a t
end

Is it a list or an array? Does it matter?

A Commercial Realization
 (Joint work with Xylem Team)

● Xylem (what is it)
● A real application in a real customer
● What we did & how it went
● Where it's going

optimize

The Xylem Intermediate
Language

●Simple polymorphic ML
●Simple module system
●Simple optimizations

– Simplistic reduction and deforestation
– Data-type specialization
– View types

Full XSL Xylem 100% Pure Java

A real application

DB Java XSL App

Server
010
101

Data Access &
business logic

(in-memory
Java objects)

DB
In-memory
XML tree

HTML page
(sent to

Web server
tier)

In-memory
XML string

XSL

Glue
together

UI

Generate
HTML

XML
between

middleware
layers

Row
in DB

Pixels
at the

Browser

DB Java XSL App

Server
010
101

The (ultimate) goal

● ~99.9% probability that you have used
this app

● 80% of workload at this customer
● Validation in live production system

Data Access &
business logic

(in-memory
Java objects)

DB
In-memory
XML tree

HTML page
(sent to

Web server
tier)

In-memory
XML string

XSL

0

0.5

1

1.5

2

2.5

3

3.5

4

ti
m

e
 (

m
s
)

MSXSL Xylem 1

Smaller is better

Response time

Smaller is better

 Xylem + fast parser

 2x faster than competitor

 Partial evaluation

 Deforestation
Incumbent

Xylem 1: a faster XSL

Data Access &
business logic

(in-memory
Java objects)

DB
In-memory
XML tree

HTML page
(sent to

Web server
tier)

In-memory
XML string

XSL

 Xylem + fast parser

 Schema-directed datatypes,
parsing/deserialization

 2.8x faster than competitor
(represents 30% improvement over
Xylem 1)

0

0.5

1

1.5

2

2.5

3

3.5

4

ti
m

e
 (

m
s
)

MSXSL Xylem 1 Xylem 2

Smaller is better

Response time

 Partial evaluation

 Deforestation

 Precise ML datatypes Incumbent

Xylem 2: Data structure
specialization

Data Access &
business logic

(in-memory
Java objects)

DB
In-memory
XML tree

HTML page
(sent to

Web server
tier)

In-memory
XML string

XSL

 Xylem + fast parser
 Schema-directed datatypes,

parsing/deserialization
 4.3x faster than competitor

(represents 44% improvement over
Xylem 2)

 Not much left: 0.4ms serialization for
a 7k document

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ti
m

e
 (

m
s
)

MSXSL Xylem 1 Xylem 2 Xylem 3

Smaller is better

Response time

 Partial evaluation

 Deforestation

 Precise ML datatypes

 View types

Incumbent

Xylem 3: No parsing at all

Data Access &
business logic

(in-memory
Java objects)

DB
In-memory
XML tree

HTML page
(sent to

Web server
tier)

In-memory
XML string

XSL

 All preceding optimizations

 Schema-directed DB access

 How much faster can it get?

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ti
m

e
 (

m
s
)

MSXSL Xylem 1 Xylem 2 Xylem 3 Xylem 4

?

Smaller is better

Response time

Incumbent

Xylem 4: Query Pushdown
(future work)

What is of note?
● Same runtime, same app-server, same JVM

● Neil Jones: find nontrivial invariants that
classical compilers cannot discover

● Immense opportunity: simpler programs,
greater performance

● Business software: unique opportunity

● FP technology is the secret weapon

– Partial evaluation
– Deforestation
– Type specialization
– View types

Outcome of Experiment

● Faster
● Cheaper
● Simpler
● More “robust”

Come for the speed
Stay for the simplicity

● In production
today

● 40% decrease in
CPU utilization
for first
production app

Xylem's Future

● Query pushdown, update
● Apply technology to other parts of e-

business stack
– Presentation (portals)
– RPC (XML-RPC, SOAP) marshallers
– Workflow (BPEL)
– Messaging (Java Messaging Service, pub/sub)

Plan of Talk

● Enterprise software
● The problem and opportunity for PL

research
● Applying ML and partial evaluation in

enterprise software: a case study
● Summary and Future work

Two big ideas

Advanced Programming Language
technology is a secret weapon in

enterprise computing

Farm where the fertilizer is thickest:
Enterprise Systems

Future work

● Streaming, ETL (extract/transform/load)
– Lazy languages

● Query pushdown
– Logic programming

● Model/view/controller (MVC) UIs
– I/O automata, reactive systems

● Code-generation to client (AJAX)
– Attribute grammars

