
Advanced Programming Language Design in Enterprise Software
A lambda-calculus theorist wanders into a datacenter

Chet Murthy
IBM Research

chet@watson.ibm.com

Abstract
Enterprise software systems automate the business processes of
most nontrivial organizations in the world economy. These sys-
tems are immensely complex, and their function is critical to our
living standards and everyday lives. Their design, implementation,
and maintenance occupies many thousands of programmers and
engineers, who work in what are aptly called the “COBOL dun-
geons”1 of the IT sector. These systems have persisted, growing by
accretion – some for decades; there are enterprise systems in exis-
tence today whose original and even subsequent authors are retired
or deceased. Such extraordinarly old, multi-layered systems might
appear to be the last place to applyavante-gardetechniques, but
in fact, they are extremely promising candidates, and for reasons
directly connected to their history and structure.

In this talk we take a tour of several deployed enterprise soft-
ware systems, and demonstrate that the appropriate application of
methods from functional programming can and does in fact yield
dramatic performance improvements and thus commercial advan-
tage in the design and implementation of enterprise software. This
concrete application is an instance of a general plan for theap-
plication of advanced programming language design and analysis
methods, to the problem of improving enterprise software. It is the
thesis of this talk that to a great extent, it is in enterprisesoftware
that advanced PL techniques can find their most advantageousap-
plication. This talk literally breaks no new ground in PL research:
every technique discussed is nearly two decades old, and ourgoal
is to introduce PL researchers to what we feel is an ideal target for
their work.

Categories and Subject Descriptors D.3.2 [PROGRAMMING
LANGUAGES]: Language Classifications; F.4.1 [MATHEMATI-
CAL LOGIC AND FORMAL LANGUAGES]: Lambda calculus and
related systems; H.2.4 [DATABASE MANAGEMENT]: Systems

General Terms Languages

Keywords Transaction processing, enterprise software, functional
languages

1 The modern version of COBOL is Java/C#.

Copyright is held by the author/owner(s).

POPL’07 January 17–19, 2007, Nice, France.
ACM 1-59593-575-4/07/0001.

1. Enterprise Systems in a Nutshell
Enterprise software systems usually consist of a collection of in-
dividual applications, receiving and processing requestsand re-
turning replies. The dominant communication paradigm in use for
several decades has been remote procedure call, and these servers
normally process many such requests concurrently. It is very com-
mon that in a nontrivial application, a “front-end” server will, in
the course of processing a request, dispatch subsidiary requests
to “back-end” servers, and this layering of servers can proceed to
many “tiers” of servers. The processing of a request is loosely re-
ferred to as a “transaction”, and while the term has a precisemean-
ing in the context of databases and concurrency-control, inactual
systems the term is much more liberally applied to almost anysort
of request/response processing.

The multi-tier aspect of these systems comes about for three
reasons: (a) they are assembled out of off-the-shelf software which
often cannot be linked together into a single application; (b) they
are assembled over time, and “front-end” servers or entire collec-
tions of servers, are often added long after the original system was
deployed, in order to provide new function or new access, and(c)
the programmers who maintain and extend these systems oftendo
not understand and do not have the skills to dig into the internals of
some system they must extend, preferring to add new function“in
front of” the pre-existing system.

A key aspect of servers that process transactions is that, aside
from side-effects that are applied to some (often external)persis-
tent store, all side-effecting operations during the transaction leave
behind no remnant effects. Practically, one can view the actual code
of the transaction as a functional program that happens to read from
its persistent store, write back to that store, and produce some func-
tional data-structure.

Internally, the code of a single server can itself be decomposed
into “layers”. In the business, these many layers of software are
referred to as “frameworks”, and often there can be many of them
in a single program. Empirically we find that the execution ofcode
in these layersalso tends not to leave behind side-effects, except,
again, by their effect on some store.

Taken together, these two empirical observations mean thatto
a great extent, one can both replace “layers” in a server with
equivalent implementations, and entire server applications with
equivalent implementations, to a greater extent than in other sorts
of software.

2. ML in the Enterprise: reducing the overhead
of framework layering

As a concrete example of such replacement, the Xylem team took a
deployed transactional application at a major e-business company,
and replaced one of its “layers” with a completely rewrittenver-
sion, using ML as an intermediate language. We were able to do



so without disturbing the rest of the application, and achieved sig-
nificant performance improvements. This application went live on
the Internet several years ago. What is more, we then proceeded to
replace neighboring layers in the same code, and by application of
naive versions of various program transformation techniques well-
known to the POPL community, we were able to get further speed-
up.

In short, we found that not only did applyingavante-gardetech-
nology from the PL community allow us to improve a particular
component, but by applying it to other components in an incremen-
tal manner, we were able to gainfurther speed-up.

Our ML implementation, Xylem, is a simple polymorphically
typed ML with algebraic datatypes and weak module system. We
compile Xylem to Java, first applying naive versions of a collection
of standard techniques from the PL literature:

• partial evaluation and simple inlining

• aggressive memo-ization

• wide-ranging common subexpression elimination

• deforestation

• data-type specialization

• view types

ML’s fit with enterprise software is (paradoxically) extremely
good becausesuch software tends to be written without intricate
side-effects that are visible across layers; further, the accretive
nature of the software development process in this area results in
systems with many, many layers, and the application of techniques
such as partial evaluation is thus extremely effective to reduce the
overhead of framework layering. View types were found to be
extremely effective in combination with abstract datatypes, as a
way of eliminating framework layering while leaving sourcecode
unaffected.

Further, the wide-ranging optimizations we applied were signif-
icantly more effective than any low-level compiler optimizations,
and this is a recurring pattern: the application of the high-level
methods developed in the PL community over many years can have
profound effects on the performance of these systems.

Paradoxically, we can sell ML into the enterprise, not basedon
its beauty, but on itsspeed.

3. Future Directions: Fixing the rest
Improving other parts of the application will require different tech-
niques, and it is interesting to contemplate how many of themare
at this point old news in the PL community:

lazy languages An important class of problems arises in the ETL
(extract/transform/load) business, and these problems can be
characterized as stream-processing problems: creating, trans-
ducing, joining, and consuming streams of data. We believe
such processing is a perfect fit for lazy languages, especially
since the optimization methods from that community can be
applied to improve the performance of what are today compu-
tationally intensive problems.

logic programming The application we described had asignifi-
cant data-access framework to provide a convenient interface
to data stored in a relational database. This is very common,
and these frameworks tend to be complex and inefficient. In ad-
dition, the view of data that the application would prefer touse,
often does not correspond to the view that the database pro-
vides. We believe that by applying techniques from logic pro-
gramming we can “push down” queries written against the ap-
plication’s data abstractions, down to the database, wherethey

can be executed as SQL. Such query pushdown can yield trans-
formative performance improvements.

I/O automata, reactive systems modeling Presentation frame-
works are responsible for producing human-readable results,
and processing input into a form internal to the application. The
typical web-application has lots of complex user-interaction
function, and this function is often implemented using the
model/view/controller (MVC) paradigm. We believe that meth-
ods from the concurrent automata modeling community, used
to model reactive and embedded systems, can be profitably ap-
plied to reduce the complexity and cost of building presentation
layer code.

First-order and Higher-order Attribute Grammars Modern web-
based user-interfaces are characterized by significant amounts
of code-generation and event-based processing. It appearsthat
attribute grammars, and especially higher-order attribute gram-
mars, might be a good fit for this sort of functionality.

3.1 The Distributed System

Heretofore we’ve focused on single server nodes and the codethat
runs on them, with the exception of database access. As more and
more of these systems is written in functional languages, the op-
portunity will arise to both coalesce code (from multiple servers to
a single server) where desirable, and also to select the “cutpoints”
(where a large program is distributed across multiple nodes) in an
automatd manner, in order to optimize, say, round-trips between
browser and server, amount of browser-side state, disconnected op-
eration, or minimizing the number of places where persistent state
must be managed.

4. Conclusion
It is an article of faith in the functional language and wider
programming language research community, that functionallan-
guages, partial evaluation, and a host of other tools and methods,
result in simpler, easier-to-understand, and easier-to-develop and
maintain programs. Such a value proposition, since it is difficult
to measure, is difficult to sell to the users of enterprise software.
We have found empirically that a different value proposition, based
on pure performanceis much easier to explain, and we have suc-
cessfully deployed an ML system into a commercial transaction-
processing system in the most important application in thatsystem
on that basis. We see further opportunities for such application, and
we believe that enterprise software is almost uniquely suited for the
application of such methods.

5. About the author
Chet Murthy has been a Research Staff Member at IBM Thomas J.
Watson Research Center since 1995. Previously he spent fouryears
doing postdoctoral research in theorem-proving and formalmeth-
ods at Cornell University and INRIA-Rocquencourt. He devotes a
significant part of his time to debugging critical situations at large
e-business and transaction-processing customers, and therest of his
time transforming that experience into research and development
initiatives. He received a Ph.D. in computer science in 1990from
Cornell University, and a BSEE in 1986 from Rice University.

Acknowledgments
The author would like to acknowledge the Xylem team, and specif-
ically Dennis Quan and Joseph Latone, without whom these ideas
would have remained merely a promising theory.


